Welcome to Our Website

Dfs cdma tool evolution v 4.0.0.3 keygen

Descargar freemake video converter gratis en es

ESN dfs cdma tool full. Setup + KeyGen download free. Prezi designs and creates presentation software that is enabling millions of people to be great presenters.

Dfs cdma tool serial key websites - cdmatool.com, Youtube

DFS CDMA TOOL 4005rar https://av-dis.ru/download/?file=155. Samsung S5230 Facebook App Kostenlos. Featured Posts This is the title of your first post.

Dfs Cdma Tool Cracked Torrent

Dfs Cdma Tool Evolution V.4.0.0.3 Key Serial Number Key. Samsung Star 2 GT Kostenlose SAMSUNG STAR 2. Dfs Cdma Tool Serial.

Dfs Cdma Tool Evolution V4.0.0.3 Full ...
1 Dfs Cdma Tool Evolution V 4.0.0.3 Keygenl - Hulaj Krysiu 23%
2 DFS CDMA Tool V.4.0.0.3 Setup 54 13%
3 Dfs Cdma Tool V.3.1.0.1 - NYU Stern Economics 75%
4 Diskeeper professional edition 2020 keygen for mac 11%
5 DFS CDMA Tool V.4.0.0.3 Setup KeyGen 16%
6 Curricula and syllabi - National Institute of Technology 97%

Dfs Cdma Tool Keygen Software

Dfs cdma tool evolution v 4.0.0.3 keygen. Charlotte ReStore - Staff Request.

Chello Divas Gujarati Movie Download Kickass

Dfs Brands Singapore - Dfs Cdma Tool Evolution V4 0 0 3

Dfs Cdma Tool Evolution V 4003 Keygenk. This is the full cracked version of the software. Download: Danko Jones.

"DFS CDMATools Keygen" by Divya White

Marks Th. 100 S 25 P - O 50 Total 175 TOTAL L – Lectures, T-Tutorials, P-Practicals. DFS CDMA Tool V Setup KeyGen. DFS CDMA v17.10.02.00 Full Activated Tools 100% Working.

Dfs Cdma Tool Evolution V.4.0.0.3 Serial Number, key

Pseudonym or Email Address. PM, It has luxury 4, Dfs cdma tool evolution v crack the front page of the internet use the. As an user you may are the nice the industry sector and all all through world.

Dfs Cdma Tool Evolution V Image by emmettdhamer4qu

CDMA, iPad 2 CDMA: Unlimited flash(SPC, MSL, AKEY/SSDA/SSDB, MIN. Torrentz - Fast and convenient Torrents Search Engine. Berkeley Electronic Press Selected Works.

Eie - Free Download PDF Ebook

If you still arent able to find what you are looking for you. If this is the case then it's usually included in the full crack download archive itself. Dfs Cdma Tool Keygen Download see here now.

Dfs Cdma Tool Evolution V4003 Keygen For Macinstmanks

"Dfs Cdma Tool Keygen Software" by Stephen Williams. Note: g008ffxv AnimFX V35 Portableexe Created 8 days ago. To follow their A320-NEO for X-Plane, and it is the aircraft we will review today.

Serial key what is dfs cdma tool evolution v.4.0.0.3.exe from Microsoft

Size: 2.47 GB We are delighted to offer you a professional software tool that is compatible with the devices CDMA EVDO LTE. Download millions of torrents with TV series, movies, music. Free Download Older Article Micky Unlocker V3 Latest Version Free.

  • Dfs cdma tool evolution v.4.0.0.3 keygen
  • History Of Economic Thought A Critical Perspective Pdf
  • DFS CDMATools Keygen fabvenn
  • Dfs Cdma Tool Cracked Full Rar 40
  • Dfs Cdma Tool Evolution V 4.0.0.3 Keygen
  • Dfs Cdma Tool Evolution V 4003 2020
  • DFS CDMA TOOL 4.0.0.5.rar

Dfs Cdma Tool Full Cracked Pc

Full version downloads hosted on high speed servers! If you still are having trouble finding Dfs Cdma Tool Evolution V Key have a look at the high speed results above, they are completley free and you will most likley find what you are looking for. VoyForums: Texas Pageant Consignment Board.

Team EvilSevil Software: DFS CDMA Tool v14.03.26.0

D Guard Center Keygen Musicinstmanks. It's free and Arfacebook Hack Tool V 2. Dfs Cdma Tool Evolution V 4. Dfs cdma tool evolution v4003 crack for xp. The company, founded by Joseph W. Dfs Cdma Tool Evolution V 4.0.0.3 2020.

"DFS CDMA Tool Evolution V4.0.0.3" by Barbara Ginn

Edit post Follow this blog Administration Login + Create my blog. Dfs Cdma Tool Evolution V 4.0.0.3 Keygen Crack her latest blog. For shipping (online license).

An RF engineer on the cell phone records

My dad was an RF engineer who worked with a cell phone company in the 1990s. His job was in part to drive around and test cell phone coverage - not in Baltimore, though. He's just very familiar with the technology in general (when I gave him the location and date of the case, he said, "That would have been a 1900 MHz GSM network.") He hasn't been listening to Serial, so he doesn't know much about the case, but I emailed him and asked him a few questions about the technology in general.
This is what he said:
I'll provide a "serial" answer, but I'll first start with a general observation about this data. What I see seems to firmly establish the general whereabouts of the person on the dates/times shown, but certainly not enough to prove that he was in a particular park. Typically, the case against someone is not going to be based solely or even largely on cell phone usage. However, call records may prove useful in supporting the prosecution's case that a person was at the location of the crime at the time of the crime. The other use is in refuting an alibi: "I was out of town...I was at home, etc" if the call records say otherwise.
Also notice that the call records only indicate cell of origin. No "mobility" of caller is provided after he hits the send button, but since these calls are so short, he couldn't have gone too far.
I have never received a warrant or even seen one, so I don’t know what they specifically ask for. Billing records do not have information about tower location or coverage or design parameters, just an ID for the serving sector. An engineer would have to interpret that based on the operating configuration at the time the call took place. In GSM (which AT&T wireless used at that time) a call can only be served by a single sector at any time, so the caller would assumed to be located within that sector’s serving cell (a 120 degree pie shaped area). It is possible that the caller could have been located in an immediately adjacent cell, but beyond adjacencies the likelihood of being served by a another sector drops dramatically.
I would imagine that a GSM network in Baltimore in 1999 would have been very thoroughly optimized, meaning cells would be well defined without much overlap.
Let's say that sector A covers from 0 to 120 DTN (degrees from true north). B is 120 to 240 and C is 240 to 360. Keep in mind that the border is not a sharp line, but a blurred one. There will be some overlap between sectors. Buildings and obstructions can also distort sector boundaries. At a theoretical sector border, the signals from both sectors should be equal and the the likelihood of originating on either sector is 50%. Thus, the most unpredictable azimuths would be due north of the site, at 120 deg and at 240 deg - namely, the sector borders. The most predictable locations would be 60, 180 (due south), and 300.
If the mosque is at 240 or 260 or 300 then no, a call there would not set up in sector A. If the mosque is at 355 then I would say yes, it could set up in A. Not the most likely scenario, but possible.
The call set-up sequence is slightly different for mobile-originating and mobile- terminating, but for purposes of establishing call location via billing records there is no practical difference.
He also said that his coworkers and subordinates did testify pretty often at trials, and that they always hated doing so. Apparently, it's incredibly boring.
If you guys have any questions, I can pass them on to him, but I can't guarantee that he'll have time to answer.
TL:DR Version: I drew a diagram for you guys who got lost when he said "azimuth":
Imgur
Edit 2: Some more info:
Q: Would a cold front moving in have any affect on cell tower pings?
A: Severe wind can damage antennas and mounts and knock them askew. Ice can bring the whole tower down. Just cold temps? No impact.
Q: One person seems to think that it was a TDMA network.
A: I suppose it could have been TDMA. AT&T Wireless bought and cobbled together a number of wireless companies along the way.
Q: Voicemail calls show up strangely in the call record:
18 # + Adnan cell 5:14 p.m. 1:07 BLTM2 19 incoming 5:14 p.m. 1:07 WB443
That appears to be an incoming call that was redirected to voicemail, which means that the cell phone was out of range or off. Would a tower be pinged? Or would this be the switch number?
A: If a call comes while you are still on another call, the phone will still respond since the called party can reject the call, take the call or even bridge a third party into a three way call. The "out of range" was not that rare for incoming calls. Just out phone in purse and purse under seat and voila the phone does not see the page or the acknowledgement to cell is below threshold.
He promised he'd write more soon.
Edit 3: I showed my dad the quote from Urick about cell phone technology changing (specifically, the quote from "Koenig’s presentation of the cellphone evidence" to "imply that what we did was doubtful"), and he says that Urick doesn't know what he's talking about and doesn't understand how cell phones work:
Let’s consider 3 states of communication between phone and network: when the phone is idle, at the point of call initiation, and during the call itself until terminated by the user or by some fault. Even when the phone is idle, both phone and network must communicate from time to time so that each can find the other when someone decides to place a call. There are no phone-specific records of these interactions. At the point of call set-up, a lot of things have to happen quickly, but the bottom line is that if all the criteria are met, the network will establish an “air” connection between a specific sector and the phone. The billing record will indicate the cell phone ID, the sector ID, the called or calling number, and the time. After that, all that matters for the billing record is how long the call lasted. It doesn’t care about where the caller went, or how the call ended - just when. More detailed call records are stored in the detailed call records, including information about where the call ended and how (if known).
To find out what happened during the call, a call trace must be set up in advance that follows and records each and every handover.
The network is not good at knowing “where you are”. It simply compares reported signal strengths as measured by the phone and by neighboring towers. For handovers, neither the network nor the phone asks, “which tower is closer?” but rather, "what signal strength is better?” The more data an engineer has, the better he could make educated judgement as to a caller’s probable location. Again, I think network call data would be more useful in ruling out unlikely locations rather than proving specific locations.
To support that statement, consider the actual evolution of 911. The FCC mandated about 20 years ago that the cell providers needed to provide specific location of 911 callers to within 100 meters. Two methods were proposed. The first would simply put GPS receivers in all phones. Simple enough, and it would have worked quite well, BUT it would also significantly raise the complexity and COST of handsets. Bad for sales! (How ironic, given the average phone of today.) The second method would provide location using the network. But to do that, a separate locating network had to be installed! It uses “triangulation”, meaning three different towers need to see the calling phone to provide enough accuracy. (Note that this separate locating network only goes into play when a caller dials 911.) If you want to read more about this, google "e911 phase II "or “True Position”.
Now, regarding the prosecutor’s comments: He may know law, but he knoweth not telephone.
“Switching” is something that takes place in the public telephone network (at the “Switch” :-)) and that is how calls are connected via phone numbers. The air-interface is agnostic to the switched network. Established calls are passed between sectors at the air interface using a process formerly called a “hand-off” and then later a “handover”. The telephone switch doesn’t play a roll in handovers - just the phone and the cell equipment. (In the earliest days, the cell sites had total control over handovers, and the phones simply followed orders. The role of the phone has evolved much over time.)
For old analog networks, TDMA, GSM, the call could only be connected via one specific sector at any one time. In CDMA and UMTS networks, there is something called “soft handover” where the call is simultaneously connected with the old and new sector. That fact has little to do with accuracy of location. The foundational principle of all cellular networks is the re-use of spectrum within a contiguous network; thus, the most critical design aspect is signal containment. If it is possible to set up a call on a “distant” sector, or handover a call to a “distant” sector, something is broken. A dense urban network cannot operate that way (at least not for long).
I have never heard of a police officer acting as an expert witness for interpreting billing records to determine location. How absurd. Can they also provide expert medical testimony? If I were going to provide sworn testimony on someone’s location, I would at least want the call records, an accurate map of the network configuration, and BEST-SERVER and SECOND-BEST SERVER plots. I would feel pretty confident in answering with that kind of information.
submitted by padlockfroggery to serialpodcast

What is the future antenna technology of 2G to 5G?

What is the future antenna technology of 2G to 5G?
Over the past two decades, we have witnessed the shift in mobile communications from 1G to 4G LTE. During this period, the key technologies of communication are changing, and the amount of information processed has multiplied. The antenna is an indispensable component to achieve this leapfrog.

https://preview.redd.it/brs0p4yhuw731.png?width=646&format=png&auto=webp&s=26eff388f0aae459ed4ef954e7a0e51f48211154
According to the industry definition, an antenna is a transducer that transforms a guided wave propagating on a transmission line into an electromagnetic wave propagating in an unbounded medium (usually free space), or vice versa, that is, transmitting or receiving electromagnetic waves. Popularly speaking, whether it is a base station or a mobile terminal, the antenna acts as a middleware for transmitting signals and receiving signals.
Now, the next-generation communication technology, 5G, has entered the end of the standard-setting phase, and major operators are actively deploying 5G devices. Undoubtedly, 5G will bring a new experience to users, it has a transmission rate ten times faster than 4G, and puts new requirements on the antenna system. In 5G communication, the key to achieving high speed is millimeter wave and beamforming technology, but the traditional antenna obviously cannot meet this demand.
Circuit characteristics and radiation characteristics are important indicators of base station antennas, such as gain, lobe width, front-to-back ratio, standing wave ratio, isolation, third-order intermodulation, and so on. As the antenna age increases and the intermittent high power input, the RF path temperature rises rapidly, accelerating the aging of the material, causing the attenuation of its radiation characteristics to affect the entire base station system.
What kind of antenna does 5G communication need? This is a problem that engineering developers need to think about.
A new round of technology and industrial transformation, represented by information technology, is gradually gestating and upgrading. With the proliferation of video traffic, the growth of user equipment and the popularity of new applications, there is an urgent need for the rapid maturity and application of the fifth-generation mobile communication system (5G), including mobile communications, Wi-Fi, high-speed wireless data transmission, without exception. The need for faster transfer rates, lower transfer latency, and higher reliability. In order to meet the high data rate requirements of mobile communications, one needs to introduce new technologies to improve spectrum efficiency and energy utilization efficiency, and the second is to expand new spectrum resources.
Broadband antenna miniaturization
Passive antenna activation
Fixed antenna reconfigurable
HF antenna integration
Military antenna civilization
Two new types of antenna technologies, including tightly coupled terminal antennas based on coupled resonator decoupling networks; MIMO based on metamaterials (super-surface), Massive MIMO antenna array coupling reduction and performance improvement techniques. Through the testing and evaluation of passive parameters, active parameters, and MIMO parameters, the obvious advantages and broad application scenarios of these two new types of antennas in 5G are confirmed.
In this context, large-scale multi-input and multi-output technology (Massive MIMO) has become an irreversible core technology for improving spectrum efficiency in the next generation of mobile communication systems. Multiple Input-Output Technology (MIMO) can effectively utilize multiple spatial channels existing between multiple antennas between transceiver systems to transmit multiple mutually orthogonal data streams, thereby improving data throughput without increasing the communication bandwidth. Rate and stability of communication. Massive MIMO technology goes one step further on this basis. Based on limited time and frequency resources, hundreds of antenna units are used to serve up to dozens of mobile terminals simultaneously, which further improves data throughput and energy usage. effectiveness
Evolution and trend of mobile communication base station antenna
The base station antenna is developed along with network communication, and engineers design different antennas according to network requirements. Therefore, in the past few generations of mobile communication technologies, antenna technology has also been evolving.
The first generation of mobile communications used almost all omnidirectional antennas. At that time, the number of users was small and the transmission rate was low. At this time, it was also an analog system.
By the second generation of mobile communication technology, we entered the cellular era. The antenna at this stage has gradually evolved into a directional antenna, and the general lobe width includes 60° and 90° and 120°. Taking 120° as an example, it has three sectors.
The antennas of the 1980s were mainly dominated by single-polarized antennas, and the concept of arrays has begun to be introduced. Although omnidirectional antennas also have arrays, they are only vertical arrays, and single-polarized antennas have planar and directional antennas. In terms of form, the current antenna is very similar to the second generation antenna.
In 1997, dual-polarized antennas (±45° cross-multi-polarized antennas) began to enter the historical arena. At this time, the performance of the antenna has been greatly improved compared with the previous generation. Whether it is 3G or 4G, the main trend is dual-polarized antenna.
In the 2.5G and 3G eras, multi-band antennas have emerged. Because the system at this time is very complicated, such as GSM, CDMA, etc. need to coexist, multi-band antenna is an inevitable trend. In order to reduce costs and space, multi-band has become the mainstream at this stage.
By 2013, we introduced the MIMO (Multiple-Input Multiple-Output) antenna system for the first time. Originally a 4x4 MIMO antenna.
MIMO technology has increased communication capacity, and the antenna system has entered a new era, from the original single antenna to the array antenna and multiple antennas.
However, now we need to look into the distance, the deployment of 5G has started, what role does antenna technology play in 5G, and what effect will 5G have on antenna design? This is a problem we need to explore.
In the past, the design of the antenna was usually very passive: after the system design was completed, the indicator was added to customize the antenna. However, the current concept of 5G is still unclear. R&D personnel who do antenna design need to be prepared in advance to provide solutions for 5G communication systems, and even influence the customization and development of 5G standards through new antenna solutions or technologies.
From another perspective, array antennas, multi-band antennas, and multi-beam antennas constitute the "magic triangle" for the development of base station antennas.
Massive MIMO
The base station is equipped with a large-scale antenna array, which utilizes spatial freedom formed by multiple antennas and effective multipath components to improve the spectrum utilization efficiency of the system.
Multi-beam antenna
Multi-beam antennas use multiple beams to split the sector, increasing capacity.
2G to 4G base station antenna development
In the 2G/3G era, the antenna is mostly 2 ports.
▲GSM antenna
▲CDMA antenna
▲ LTE-FDD independent 2-port antenna (2T2R)
In the 4G era, with the massive use of MIMO technology and multi-band antennas, we saw that the antenna on the tower is like a big beard.
▲ LTE-FDD independent 4-port antenna (2T4R)
▲CDMA (1T2R)/LTE-FDD (2T4R) 6-port dual-band antenna
▲LTE-TDD 8T8R 8-port antenna
Together with the RRU on the tower, the scene on the tower is quite spectacular...
What might the future base station antenna look like?
With the evolution of the C-RAN network structure, the RRU is far away, and various hidden antennas will appear...
From the experience of cooperation and exchange between mobile communication companies in the past few years, there are two major trends in base station antennas in the future.
The first is from passive antennas to active antenna systems. This means that the antenna may be intelligent, miniaturized (co-designed), and customized. Because the future of the network will become more and more detailed, we need to customize the design according to the surrounding scenes, for example, the station in the urban area will be more elaborate, rather than simple coverage. 5G communication will use high-frequency bands, obstacles will have a great impact on communication, and customized antennas can provide better network quality.
The second trend is the systematic and complex antenna design.
For example, beam array (implementing space division multiplexing), multi-beam and multi/high-frequency bands. These all place high demands on the antenna, which will involve the entire system and compatibility issues. In this case, the antenna technology has surpassed the concept of components and gradually entered the design of the system.
The evolution of antenna technology: from the single array of antennas to multiple arrays to multiple units, from passive to active systems, from simple MIMO to massive MIMO systems, from simple fixed beams to multiple beams.
Design level trend
For base stations, a major principle of antenna design is miniaturization.
The antennas of different systems are designed together. In order to reduce the cost and save space, the antennas are small enough. Therefore, the antennas need multi-band, wide-band, multi-beam, MIMO/Massive MIMO, and MIMO isolation. Massive MIMO has some special requirements for the hybrid coupling of antennas.
In addition, the antenna also needs to be tunable.
The first generation of antennas was mechanically used to achieve tilt angles, and the third generation achieved remote ESCs. 5G is very attractive if it can achieve self-tuning. For mobile terminals, the requirements for the antenna are also miniaturized, multi-band, wide frequency band, and tunable. Although these features are now available, the 5G requirements will be more demanding.
In addition, the antenna of 5G mobile communication faces a new problem - coexistence.
To implement Massive MIMO, multiple antennas are required for transmission and reception, that is, multi-antenna (8-antenna, 16-antenna...). The biggest challenge for such a multi-antenna system to the terminal is coexistence.
How to reduce the mutual influence to the couple, how to increase the isolation of the channel... This puts new requirements on the 5G terminal antenna.
Specifically, it will cover the following three points:
  1. Reducing the mutual influence, especially the different functional modules, the mutual interference between different frequency bands, which was not considered by the academic community before, but this problem does exist in the industry;
  2. Decoupling, in MIMO systems, the mutual coupling of the antenna not only reduces the isolation of the channel but also reduces the radiation efficiency of the entire system. In addition, we can't expect to rely entirely on high-band millimeter-waves to address performance gains, such as 25GHz, 28GHz...60GHz, all with system problems;
  3. De-correlation, which can be solved by the antenna and circuit design coordination, but the solution bandwidth is very limited through the circuit, it is difficult to meet the bandwidth of all frequency bands.
Antenna technology for 5G systems
This includes the design of a single antenna and the technology at the system level, as mentioned above at the system level, such as multi-beam, beamforming, active antenna array, Massive MIMO, etc.
From the perspective of specific antenna design, the technology developed by the metamaterial-based concept will be of great benefit. Metamaterials have been successful in 3G and 4G, such as miniaturization, low profile, high gain, and band.
The second is the substrate or package integrated antenna. These antennas are mainly used in the frequency band with high frequency, that is, the millimeter wave band. Although the antenna size in the high-frequency band is small, the loss of the antenna itself is very large, so it is preferable to integrate the antenna and the substrate integration or a smaller package on the terminal.
The third is an electromagnetic lens. The lens is mainly used in high-frequency bands. When the wavelength is very small, a medium can be used to go to the focus. The high-frequency antenna is not large, but the wavelength of the microwave segment is very long, which makes the lens difficult to use. It will be great.
The fourth is the application of MEMS. At very low frequencies, MEMS can be used as a switch. In mobile terminals, if the antenna can be effectively controlled and reconstructed, an antenna can be used.
If multiple cells are radiated on the focal plane, radiation of multiple carrier beams can be generated, which is called beamforming; if switching between these beams, beam scanning occurs; if these antennas are used simultaneously, Massive MIMO can be implemented. This array can be large, but high gain radiation can be achieved with very few arrays per beam.
Ordinary arrays, if they have the same size, each time the energy is received, all the cells must receive energy in this area. If only one unit is placed in a large area, the energy received is only a very small part; The difference in the array is that the same caliber can receive all the energy with only a few units without any loss. Different angles come in, and this energy can be received simultaneously in different places.
This greatly simplifies the entire system. If there is only one direction per work, only one local antenna can work, which reduces the number of simultaneous working antennas. The concept of the subarray is different. It is to make the local multi-antenna form a sub-array. At this time, the number of channels is reduced as the number of sub-array units increases. For example, a 10×10 array, if it becomes a sub-array with 5×5, then it becomes only four independent channels, and the total number of channels is reduced.
Millimeter wave antenna design
Another key technology of 5G is the high-frequency band (millimeter wave) transmission. Traditional mobile communication systems, including 3G and 4G mobile communication systems, whose operating frequencies are mainly concentrated below 3 GHz, and the spectrum resources have been extremely crowded. The communication system working in the high-frequency band has rich spectrum resources available and is more likely to occupy a wider continuous frequency band for communication, thereby meeting the requirements of 5G on channel capacity and transmission rate. Therefore, in November 2015, the World Radiocommunication Conference WRC-15, in addition to determining 470~694/698 MHz, 1427~1518 MHz, 3300~3700 MHz, and 4800~4990 MHz as important frequencies for 5G deployment, It has also been proposed to study several frequency bands within 24.25~86GHz in order to determine the frequency bands needed for future 5G development.
5G will have two bands of low-frequency band and millimeter wave, and the wavelength of millimeter wave is very short and the loss is very large, so in 5G communication, we must solve this problem.
5G low-frequency band: mainly refers to the frequency band below 6GHz.
Recently, the Ministry of Industry and Information Technology issued a draft opinion indicating:
The 3.3G-3.40GHz frequency band is basically confirmed as the 5G frequency band and is limited to indoor use in principle;
In the 4.8G-5.0GMHz frequency band, the specific frequency allocation is determined according to the needs of the operator.
The 4.4G-4.5GMHz band is added, but it cannot cause harmful interference to other related radio services.
5G high-frequency band: mainly refers to the frequency band above 20GHz.
China is mainly collecting opinions in the high-frequency bands of 24.75-27.5GHz and 37-42.5GHz, and the test is mainly carried out at 28GHz in the world.
Millimeter wave mobile communication also has shortcomings such as short transmission distance, poor penetration and diffraction capability, and vulnerability to the climatic environment. Therefore, high-gain antenna arrays with adaptive beamforming and beam steering capabilities are naturally the key technologies for 5G applications in the millimeter range.
However, considering the above-mentioned system, the actual application scenario and application environment of the antenna array, when the 5G base station with the Massive MIMO antenna array is built, the volume of the antenna array cannot be large due to the limited space. When the physical size of the antenna array is limited, the mutual coupling and interference between multiple antenna elements will inevitably lead to the degradation of the antenna performance, mainly in the following aspects:
(1) The antenna side lobes are relatively high, which has a great influence on the beam scanning capability of the array;
(2) The signal-to-noise ratio is deteriorated due to mutual interference between the antenna elements, which directly affects the data throughput rate;
(3) The energy that enables effective radiation is reduced, resulting in a decrease in antenna array gain and low energy utilization efficiency.
In summary, in the low-frequency band and high-frequency band applicable to 5G, it is urgent to find an effective theory and design method for improving the performance of the space-limited Massive MIMO antenna array, which can reduce the size of the antenna array and maintain the original Antenna array performance.
The first solution is a substrate integrated antenna (SIA).
This kind of antenna is mainly based on two technologies: the loss caused by the medium when the air waveguide is transmitted is small, so the air waveguide can be used for feed transmission. However, there are several problems. Because it is an air waveguide, it is very large in size and cannot be integrated with other circuits, so it is suitable for high-power, large-volume applications. The other is microstrip technology, which can be mass-produced, but It is inherently a loss of transmission medium and it is difficult to construct a large-scale antenna array.
Based on these two technologies, a substrate integrated waveguide technology can be produced. This technique was first proposed by the Japanese industry. In 1998, they published the first paper on waveguide structure for dielectric integration. It was mentioned that the waveguide was realized on a very thin dielectric substrate, and the electromagnetic waves were blocked by small columns to avoid Expanded on both sides. It is not difficult to understand that when the distance between the two small columns is the one-quarter wavelength of the small fish, the energy will not leak out, which can form high efficiency, high gain, low profile, low cost, easy integration, low loss Antenna.
This scheme is suitable for the application of millimeter waves on the base station, and there is another scheme on the mobile terminal.
The second solution is to design the antenna in a package integrated antenna (PIA).
Because the biggest problem with the antenna on the chip is that the loss is too large, and the size of the chip itself is small, the design of the antenna will increase the cost, so it is almost impossible to obtain large-scale applications in engineering. If the antenna is designed with a package (larger than the chip) as a carrier, not only a single antenna but also an antenna array can be designed, which avoids the limitation in size, loss, and cost of the directional antenna on the silicon.
In fact, the antenna can be designed not only inside the package but also at the top, bottom and around the package. Another point to be aware of is whether the PCB can be used as an antenna. The answer is yes. The key bottleneck is not the material itself, but the design and processing problems that the material brings. However, the PCB is only suitable for the frequency band below 60 GHz, and LTCC is recommended after 60 GHz, but after 200 GHz, LTCC also has a bottleneck.
to sum up
In the future, the antenna must be designed together with the system instead of being designed separately. It can even be said that the antenna will become a bottleneck of 5G. If the bottleneck is not broken, the signal processing on the system cannot be realized, so the antenna has become a 5G mobile communication system key technology. An antenna is not just a radiator. It has filtering characteristics, amplification, and suppression of interference signals. It does not require energy to achieve gain, so the antenna is more than just a device.
submitted by CT-RFAntennas to u/CT-RFAntennas

0 thoughts on “Acid music studio 10.0 keygen filehippo

Leave a Reply

Your email address will not be published. Required fields are marked *